Hermite Interpolation

Intro ...

Cubic Hermite Interpolation

Intro ...

Example conversation
Figure 1. Cubic Hermite Curve

We look for a curve

$$ c(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 $$

that satisfies

$$ \begin{cases} c(0) = p_0, \quad c^{\prime}(0) = v_0 \\ c(1) = p_1, \quad c^{\prime}(1) = v_1 \end{cases}, $$

or we should solve the following system

$$ \begin{cases} p_0 = a_0 \\ v_0 = a_1 \\ p_1 = a_0 + a_1 + a_2 + a_3 \\ v_1 = a_1 + 2a_2 + 3a_3 \end{cases}. $$

which gives us the curve parameters we want in terms of the given data

$$\begin{cases} a_0 = p_0 \\ a_1 = v_0 \\ a_2 = 3p_1 - 3p_0 - 2v_0 - v_1 \\ a_3 = -2p_1 + 2p_0 + v_0 + v_1 \end{cases}. $$

If we rearrange the terms for \(c(t)\) we get

$$ c(t) = (1 - 3t^2 + 2t^3)p_0 + (t - 2t^2 + t^3)v_0 + (-t^2 + t^3)v_1 + (3t^2 - 2t^3)p_1 $$

or in basis function form

$$ c(t) = H_0^3(t)p_0 + H_1^3(t)v_0 + H_2^3(t)v_1 + H_3^3(t)p_1, $$

where

$$ \begin{cases} H_0^3(t) = 1 - 3t^2 + 2t^3 \\ H_1^3(t) = t - 2t^2 + t^3 \\ H_2^3(t) = -t^2 + t^3 \\ H_3^3(t) = 3t^2 - 2t^3 \end{cases}. $$

Plotting the Cubic Hermite basis functions

Example conversation
Figure 2. Cubic Hermite basis functions

Examples

Some text

Example conversation
Figure 2. Cubic Hermite basis functions
Example conversation
Figure 2. Cubic Hermite basis functions
Example conversation
Figure 2. Cubic Hermite basis functions
Example conversation
Figure 2. Cubic Hermite basis functions

Quintic Hermite Interpolation

Piecewise Curves: Building Complex Paths

Experiments

alt text

alt text

alt text

links

social